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ABSTRACT

This paper presents a frequency-domain technique for estimating

distributed lag coefficients (the impulse-response function) when observations

are randomly missed. The technique treats stationary processes with randomly

missed observations as amplitude-modulated processes and estimates the

transfer function accordingly. Estimates of the lag coefficients are obtaine

by taking the inverse transform of the estimated transfer function. Results

with artifically created data show that technique performs well even when the

probability of an observation being missed is one-half and in some cases when

the probability is as low as one-fifth. The approximate asymptotic variance

of the estimator is also calculated in the paper.
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A Method for Estimating Distributed Lags when
Observations are Randomly Missing

Melvin J. Hinich and Warren E. Weber
Virginia Polytechnic Institute

and State University
Blacksburg, Virginia 24061

Introduction:

Least-squares estimation of the lag coefficients of a distributed lag

model is not a straight-forward regression problem when the sample has missing

observations. Even though the normal equations can be computed using sums of

the available cross products, the estimators in the solution of these

equations are not necessarily unbiased. In any event, a special computer

program is required to compute the normal equations of a distributed lag

linear model for this case.

In this paper, we present a frequency domain approach to the estimation

of lag coefficients when observations are randomly missed. The estimators are

easy to compute if a discrete Fourier transform program is available, as is

the case for most time series software libraries. Estimates of the lags

computed by our approach have common large sample variance. This is a useful

property for identifying model structure.

Our paper proceeds as follows. In the first section we review the

4requency-domain approach to the estimation of distributed lag models. In the

second, we discuss the estimation of spectra and distributed lags with

mLssing observations. In the final section we present some results of using

our suggested technique on artifically created data.
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1. A Frequency Domain Approach:

Our discussion of the frequency domain approach to the estimation of

distributed lags follows the commonly used non-parametric approach (Jenkins

and Watts, 1968, Chapter 10). Let {x(t)) and {c(t)1 be two independent, mean

zero, stationary time series, and let

E[x(t+T)x(t)] - OX(T) for all T

and

2

E[c(t+T)c(t)] 
-

0 T 0

so that {W(t)} is white noise. For simplicity, set the time unit equal to the

sampling interval, so that t takes on integer values. The time series {y(t)}

is related to the other two series according to:

y(t) - ) h(k)x(t-k) + c(t), (1)
k =-

where {h(k)) is an absolutely summable sequence whose transfer function is

zero outside the band -v 4 w 4 w. We will also assume that h(O) - 0, so that

changes in x(t) cannot have an immediate impact on y(t).

From (1) we obtain

S S Y() - H(w)Sx(), -o s e t, (2)

where S,(w) and Sxy(w) denote the own spectrum of {x(t)} and the cross-
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s'ectrum between {x(t)) and {y(t)}, respectively, and

H(w) = ) h(k) exp(-iwk) (3)
k

is the transfer function of {h(t)}.l Upon rearranging (2),

H(w) - SXY(w)/Sx(w). (4)

Now, suppose that we observe the series {y(t)} and {x(t)) at the same

times t=0,1,...,n-1. From this set of observations we can obtain estimates

of the spectrum of {x(t)} and the cross-spectrum between {x(t)} and {y(t)}

as follows. Let X(wk) denote the discrete Fourier transform of {x(t)} for

tl.e observations at the angular frequency ulk - 27k/n; i.e.,

n-I
X(wk) = I x(t)exp(-iwkt). (5)t-0

lLet Ya(k) be the absolutel summable covariance function of the mean

zero, stationary time series {a(t)}. We use the convention that

Sa(w) - 7 Ya(k)e-iwk, -i

defines the spectrum of {a(t)}. Under this convention

Ya(k) = f -7 SaWe

Thus,

Ya(0 ) f Sa dw.
27r
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Thus, we can estimate Sx(wk) as

1 d
Sx(wk) - ). IX(wk+j)l2 , (6)

6 j--d

where s-2d+l. Similarly, if we let Y(wk) denote the discrete Fourier

transform of (y(t)} at the angular frequency wk, we can estimate SXY(w k ) as

-1 d

Sy(Wk) -J- X(Wk+j)Y*(wk+j), (7)
8 j--d

where an asterisk denotes complex conjugate.

Thus, we can form an estimate of H(w) by substituting (6) and (7) into

(4) to obtain

H(W) - Sxy(w)/Sx(w). (8)

From (10.3.14) in Jenkins and Watts we know that when n and s are large

1 1 '-2

EIH(wk) - ll(wk)1 2  - 1IH(s )12 [ xy(wk)-1], (9)

2
where Yxy(wk) is the squared coherency between {y(t)} at {x(t)} at frequency

wk; i.e.,

Yxy(wk) - ISXY(wk) 2/Sx(wk)Sy(wk).

An estimate of {h(k)) can be obtained by taking the discrete inverse

transform of H(w); i.e., we can estimate {h(k)} as

1 n-1
h(k) - - ), H(wj)exp(iwkj). (10)

n JM'

Given the smoothing in the numerator and denominator of (8)

I m-1

h(k) ! - H(wjs)exp(iwjsk), (10')
m J 0

L ,
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where m = n/s. If m + - as n + , then the expected value and variance of

the right hand side of (10') converge to the expected value and variance of

(10). Since (H(wjs): J=O,...,m-1} are asymptotically independent as m +

it follows from (9) that

Var[h(k)] -- EIH(l ) - H(wjs)1 2  (11)
m2  J-O

I M-1 -2
.- Ir-i IH(wj s)l2[yxy I js)-

in28 j=0
... 2w -2

1 I2 H(w)1 [yxy(W - 1]dw.

2wn 0

The estimators of {h(k)} have the same variance at all lags since this

variance is independent of k. Equation (11) suggests that the variance

of (h(k)} can be estimated as

a 1 n-i A -2

Var[h(k)] - I IH(wj)12[xy(wj)-1]. (12)
n j=0

-.- J,"on r
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2. Missing Observations:

Our method of estimating {h(k)} in the case of missing observations

proceeds along lines similar as those above. However, it first involves

finding a method of estimating Sx(w) and Sxy(w) for the case of randomly

missing observations. Our approach is to follow Itloomfield (1970) who applies

Parzen's (1963) approach to amplitude-modulated stationary processes to the

estimation of single series spectra in the case of randomly missing

observations.

Consider the case of the {x(t)} series. The amplitude-modulated series

{x'(t)} is constructed by replacing the missing observations in the original

series by zero, the mean of (x(t)}. In other words, we define the amplitude

modulating series [z(t)) - {x'(t)/x(t)) as

1 if x(t) is observed
z(t) - (13)

0 otherwise.

Thus,

X'(t) = z(t)x(t). (14)

Following Bloomfield and Scheinok (1965), we assume that the pr)cess

which causes observations to be missing is a stochastic process which is

independent of {x(t)}. In addition, we assume that {z(t)} has the properties

that for all t,

P[z(t) - 11 - Px

Pfz(t) - 0] - I - px

and

Cov[z(t),z(t + T)] = z(T).
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Thus {z(t)) is weakly stationary, and

E[z(t)z(t + T)] = Oz(T) + p2  for all T.

x

By the independence of {x(t)} and {z(t)}, it follows that E{x'(t))

E{x(t)}E{z(t)) = 0. Consequently,

E{x'(t)x'(t + T)) - E{x(t)x(t + T)} E{z(t)z(t+ )} (15)

. oX(T) [p2 + oz(T)]

It then follows that the spectrum of {x'(t)} is

Sx,(W) - p2Sx(w) + (2w)-1 Sz(w-w,) Sx(w')dw,. (16)
x

Similarly, we assume that there is an amplitude-modulating series C(t)

such that

1 if y(t) is observed

C(t) = (17)

0 otherwise

which gives rise to the amplitude-modulated series

y'(t) - 4(t)y(t). (18)

We assume that {W(t)} is independent of both {x(t)} and {y(t)} and that the

series has the properties that for all t,

P[C(t) = 1] = py

P[C(t) - 0] - 1 - py

Cov[,(t),z(t + T)] - Uz(T).

[ ,.
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Thus,

E[C(t)z(t + t)] OzC(1t) + PxPy"

Since {x(t)) and {y(t)} are independent of both {z(t)) and {(t)}, it follows

that

E{x'(t)y'(t + T)) - E{x(t)y(t + T)} E{z(t);(t + T)} (19)

= axy(T)[pxPy + YzC(T1]-

It then follows that the cross spectrum of {x'(t)) and {y'(t)} is

Sx y,(W) PxPySxy(w) + (2T 1)- I SZC(ww')Sxy(w')dw'. (20)
,W

Thus, using estimators similar to (6) and (7) we could estimate Sx,(W),

Sx,y,(w), Sz(w), and Sz (w) from the available data and use (16) and (20) to

solve for Sx(W) and Sxy(w). These estimates could then be substituted into

(8) and {h(k)} estimated by taking the inverse transform of the result, as in

the case when no observations were missing. Note that our analysis does not

require either that {x(t)} and {y(t)} be observed at the same times or that

the same random process generates the missing observations of the two series.

In addition, there is no requirement that the random processes governing

the observability of the underlying series be independent, so that the

analysis does not preclude the case in which {x(t)} and {y(t)) must be

observed at the same times.

In general, (16) and (20) can be solved for Sx(w) and Sy(w) using the

method given by Bloomfield. However, in the present paper we will only

discuss the special case in which the series {z(t)} and {C(t)} are white

noise. In this case, (16) and (20) can be considerably simplified and the

solutions for Sx(w) and Sxy(w) become much easier.
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When the binomial distributions generating the missing observations are

white noise,

PX(C-PX) I 0

0 (T) - (21)
z 0 otherwise

and

GzC T - 0

OzC(T) = (22)
0 otherwise

Under these assutmptions (16) and (20) become

Sx,(w) = p2vx(w) + Px(1-Px)0 2  (23)
x x

and

Sxty,(I) - pxpySxy(u) + ozcxy,  (24)

respectively. Thus, we find that in the case in which {z(t)) and {C(t)) are

white noise, the spectra of the amplitude-modulated series are linear

transformations of the original series. Substituting (23) and (24) into (4)

yields

2

H(w) - (px/Py) ([Sxy,(w) -OzCOxyj/[Sx,(W) - Px(l-px)axl}•  (25)

T:,us, if we estimate Sx,(wk) as

S -- IX'(wk+j)12  (6')
X'( .- - I8 j--d
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and Sx1y,(Wk) as

j d
Sx1y,(Wk)  I - X'(Wk+j)y'*(Wk+j) ,  (71)

we can estimate H(Wk) as

A A - A A A2

H(wk) - (Px/Py){[Sxfyl(wk) a ZW/SIo)-x1p~~) (26)

Further, if az4 = 0 or oxy= 0, it is shown in the Appendix that

1 -2 
1-Px ax2

EJH(wk) - H(wk)12  - IH(wk)1 2 {yx'y(Nk) + [( ---- ----- }]2 -1} (27)
8 px Sx(wik)

This approximation is good when p/s > > 1, where p 
= min(px,py).

Once again an estimate of {h(k)) can be obtained by taking the discrete

inverse transform of H(w) as given by (26). Further, we could obtain the

approximate variance of fh(k)} by repeating the steps used to obtain (11)

using (27) in place of (9). This variance is

I 2w -2 1 Px -

Var[h(k)J --- f IH(w)12 {(yxi'(W) + ~ ----- ------ 1)dw. (28)
27rn y px Sx(wik)

It can be estimated in the same way that (11) was estimated above.

!.



Once again, we note that the asymptotic variance of h(k) is the same

for all lag coefficients. Further, note that if ax2 /S(w) and ay2/Sx(w) are

close to unity for all w and Px - Py p, the variance in the case missing

observations will be more than p2 times that for the case in which no

observations are missing. 2 Further, when p gets small, the standard errors of

{h(k)} are of the order (pVn)-l.

21f az = 0 or oxy = 0, it is easy to show tha

2 2 (1-px) ax2  (l-p") CY2

Yx (W) Yxy(-)/{[l - - ------ + ----------- (29)px Sx() Py Sy(W)

2 2
Thus, if Sx(w) ax and Sy(w) t ay, the terms in brackets in (29) are

-1 -1
approximately equal to Px and py respectively. Thus, for this for this

2 2
case Yxy'(W) (PxPy)-Yxy(w).

-90ki-

I.

-- V A
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3. Results with Artifically Created Data:

In order to evaluate our frequency-domain approach to estimating

distributed lags when observations are randomly missing, we used it on some

artifically created data. Specifically, we generated {y(t)} according to (1)

using the weights

0.25 k = 1, 5

0.75 k = 2, 4
h(k) = (30)

1.0 k=3

0.0 otherwise.

The errors {e(t)) were computed by a normal N(0,1) pseudo-random number

generator. For all experiments the number of observations was 12000, which

is approximately the number of days since 1947. The independent Bernoulli

trials used to create {z(t)) and ((t)} were obtained using a uniform (0,1)

pseudo-random number generator. In the case of (z(t)}, if the value of the

t-th random number exceeded Px, then z(t) was set equal to zero. Otherwise,

z(t) = 1. A similar procedure was used to generate {C(t)} with py used in

place of Px" In all experiments {z(t)} and { (t)} were independent. 3 All

spectral estimates were obtained by smoothing perlodograms. The weights used

in the smoothing of Sx1y,(Wk) and Sx,(wk) are discussed below. In the

3The specific normal pseudo-random number generator used was the FTGEN

subroutine in the International Mathematics and Statistics Library (IMSL).
The specific uniform (0,1) pseudo-random number generator used was the GGUBS
subroutine of IMSL.

- - .4- 1
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calculation of (26) actual value of px, Py, and oz4 were used instead of

estimated ones.4 The variance of {x(t)) was estimated using only the non-zero

values of {x'(t)}.

The first set of experiments were performed letting {x(t)} be white noise

normal random variables with unit variance. The {x(t)} were generated with

thE same computer subroutine used to generate {e(t)). The results for each of

up to ten runs are presented in Table I. The values used for Px and py are

given in the column labeled "Percentage Observation." In all runs a 999 point

moving average was used to smooth the periodogram to obtain the spectral

estimates. The row labeled "Squared Error Fit" contains the values of

11999
[ lh(k) - hk)]

2

k-O

which is the sum of squared differences between the actual and estimated lag

coefficients.

There are three major points concerning these results. The first is that

the estimated lag coefficients track the actual lag coefficients quite well as

long as Px and py are 0.2 or above. This can be seen both in the low values

of the squared error of fit and the high degree of correspondence between the

means of the estimated lag coefficients and their actual values.

The second point is that the variances of the parameter estimates

increase as the percentage of missing observations Increasesas (28) and (29)

indicates they should. This can be seen in the increasing standard errors of

all of the estimates as the "Percentage Observation" decreases. Further, it

4Since the values which would have been obtained if PxP and oC had
been estimated were close to the true values, the results would not change
much if estimated values of those parameters had been used instead.
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is interesting to note as long as Px and py are 0.2 or above, these standard

errors are roughly constant cross coefficients as (27) indicates they should

be.

The third point is that there is a downward bias in the estimates of h(1)

to h(5), the non-zero lag coefficients. Our conjecture is that this downward

bias is caused by the bias imparted to the spectral estimates due to including

999 terms in the moving average used to smooth the periodogram. To test this

conjecture, we redid several of the runs with SXIy,(wk) and Sx(wk) estimated

using only 99 terms in the moving average. These results are contained in

Table 2. As can be seen, this modification does decrease the downward bias

for the cases Px - Py = .9 and Px = Py = .5. However, it is also apparent

that for this case the estimated lag coefficients track the true lag

distributions well only when no more than 50 percent of the observations are

missing. Thus, we have the classic trade-off between bias and variance due to

the fact that increasing the number of terms used to smooth the periodogram

decreases the variance but increases the bias of the estimates of the

spectrum.

We also evaluated our procedure when {x(t)1 was colored. Specifically,

using the same nNormal N(0,1) pseudo-random number generator as before we

generated

x(t) = px(t-1) + v(t), (19)

2

with p - 0.5 and av - 1. We also generated enough observations on x(t) prior

to those used to estimate the lag coefficients, so that the choice of initialIf
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x(t) should not influence the results. Our results for this case are

presented in Table 3. Once again we find that we are able to track the lag

di-stribution well as long as no more than 50 percent of the observations are

missing. Further, the results for this case continue to show that variance of

tthe estimates increase as Px and py decrease and that including more points in

the moving average used to smooth the periodograms increases the bias, but

decreases the variance of the istimated coefficients.

.,
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APPENDIX

The Approximation (27) for the Mean Squared Error of H(w)

Let exty,(w) - SxIyI(W) - Sx9y,(w) and ex,(w) - Sx,(w) - Sx,(W). Assume

that the cumulans of {x(t)) and {y(t)} satisfy condition (4.3.10) in

Brillinger (1975). 5 From Theorems 4.3.2 and 4.4.1,

Eexiyt() = 0, Ext(w) I0 , (Al)

1
EIcxty,(w)12  - Sx,(W)Sy,(W), (A2)

B

I
Eex,2(e) - SX, 2 (), (A3)

S

and

* 1 *
Eexty,(W)cx,(W) Sxy,(W)Sx,(W) (A4)

for large n (the approximations are of order n-1 ). Since the variances of

xty , and x are of order s- 1, whereas the variances of Px, Py, and Ox2 are

of order n-1, we can substitute Px, Py, and ax2 for their estimates in (26)

without affecting the order of the approximation when n >> s.

Since a - 0 or Oxy - 0,

H(w) - (px/py)[Sxsy,(w) + ex,y,(w)J/[Sx,(w) + ex,(w) - c] (A5)

5This condition holds if {x(t)) ind fe(t)} are Guassian AR14A processes.
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where c px(l -px)aO 
2. The first order term in a Taylor series

approximation of (AS) is

H(w) - H(w) =PpYp j1(S'() - 0 1 [cx' Y'(W) (06)

- CSx'CW) - cYlS xty i(W)cxt(W)1

It follows from (23), (24), (A2), and (03) that this approximation is good if

lip/s is small, where p m min(p-,, py). Applying (A2) and (A3) to (A6),

EIH(w) -H(w)1
2 - -~xyISw - c- 2]

[Sxw(W)SY t(w) -21SX1 y (w)12(Sx,(w) - cY'SSXi(W)

2
+ lSxfy,(W)12(Sx,(w) - cV-2Sxl(w)]

S1 [pxpy1CSl(sx ) - cY-2IS xf y w)11 2 [y-2Y'W

2
-- 2CSXw(W) - cY1lSxi(W) + (Sxi -

2 SX'(W)I

-2= sIIH,,)12yx Y'W)- 1 + (1-(Sxu(W) - c)'SSXi(W)12

= s IH(w)12(Yx(yi(W) I + [c(SxCw) -c)-1]2 }

-2 'PX ax 2
s'IH~w)12(yxwy,(w) 1 + ---+ }

PX SX(W)
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